Linear¤
equinox.nn.Linear(equinox.Module)
¤
Performs a linear transformation.
__init__(in_features: int | Literal['scalar'], out_features: int | Literal['scalar'], use_bias: bool = True, dtype=None, *, key: PRNGKeyArray)
¤
Arguments:
in_features: The input size. The input to the layer should be a vector of shape(in_features,)out_features: The output size. The output from the layer will be a vector of shape(out_features,).use_bias: Whether to add on a bias as well.dtype: The dtype to use for the weight and the bias in this layer. Defaults to eitherjax.numpy.float32orjax.numpy.float64depending on whether JAX is in 64-bit mode.key: Ajax.random.PRNGKeyused to provide randomness for parameter initialisation. (Keyword only argument.)
Note that in_features also supports the string "scalar" as a special value.
In this case the input to the layer should be of shape ().
Likewise out_features can also be a string "scalar", in which case the
output from the layer will have shape ().
__call__(x: Array, *, key: PRNGKeyArray | None = None) -> Array
¤
Arguments:
x: The input. Should be a JAX array of shape(in_features,). (Or shape()ifin_features="scalar".)key: Ignored; provided for compatibility with the rest of the Equinox API. (Keyword only argument.)
Info
If you want to use higher order tensors as inputs (for example featuring "
"batch dimensions) then use jax.vmap. For example, for an input x of "
"shape (batch, in_features), using
linear = equinox.nn.Linear(...)
jax.vmap(linear)(x)
(batch, out_features).
Returns:
A JAX array of shape (out_features,). (Or shape () if
out_features="scalar".)
equinox.nn.Identity(equinox.Module)
¤
Identity operation that does nothing. Sometimes useful as a placeholder for another Module.
__init__(*args: Any, **kwargs: Any)
¤
Consumes arbitrary *args and **kwargs but ignores them.
__call__(x: ~_T, *, key: PRNGKeyArray | None = None) -> ~_T
¤
Arguments:
x: The input, of any type.key: Ignored; provided for compatibility with the rest of the Equinox API. (Keyword only argument.)
Returns:
The input, unchanged.